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Abstract 

Minkowski space can be given topologies which are compact and which have, as their 
homeomorphism group, the inhomogeneous Lorentz group together with dilatations. 

1. Introduction 

Severn years ago, Everett & Ulam (1948) asked the following question: 
Given a set X and a group G, which topologies on X have G as their homeo- 
morphism group? Apart from the mathematical interest, the solution to this 
question will be interesting in several other respects, especially in the case of  
some known spaces and some well-known groups acting on them. For example, 
if one is dealing with a concrete set such as the four-dimensional space-time 
continuum of  Special Relativity and a group such as the inhomogeneous 
Lorentz group, then one would like to know the different topologies on the 
set which would give rise to the same homeomorphism group, namely the 
inhomogeneous Lorentz group. However, it has been observed in this case 
(Nanda, 1971, 1972; Zeeman, 1967) that there exist several such topologies, 
some of  which are not even comparable to each other. It is therefore obvious 
that the solution to such a problem will be immensely difficult and in some 
cases a highly improbable task. As a first step, therefore, it will be desirable to 
start with a given topology and to look for another topology on the same set 
which is, in some way, connected with the given topology" and whose homeo- 
morphism group will be the same. Lee (1967, 1969) has already done some 
work in this direction. The object of  the present paper is to give one such 
topology. 

We shall start with an arbitrary topological space T and its antispace T* 
(definitions given in the next section). We shal prove that the group ofhomeo-  
morphisms of  T is equal to that of  its antispace T*. De Groot (1967)has shown 
that if a topological space T is first countable and Hausdorff but not  compact, 
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then its antispace T* will be compact, non-Hausdorff, 7"1, and that every open 
set in T* will be connected. Furthermore, the topology of T* will be weaker 
than that of T. At the end of this paper we give examples of some first count- 
able Hausdorff topologies on Minkowski space (definitions given in Section 4) 
and determine the corresponding compact topologies of their antispaces. We 
shall also show that for any Hausdorff topology on Minkowski space having 
the irthomogeneous Lorentz group as the homeomorphism group, the open 
sets are unbounded in the Euclidean sense and are therefore of  infinite 
diameter. 

2. Preliminaries 

The following definitions are due to De Groot (1967). 

Definitions 
Let X be any set and let {G} be a family of subsets G of X closed under 

finite unions and arbitrary intersections. We do not assume the usual convention 
that X and the empty set 0 are members of (G}. A pair T_ = (X, {G}) is called 
a (topological) Minus space, where (G} indicates the family of closed sets of 
T_. One can of course extend every minus space T_ to a topological space T 
by adding X and 0 as closed sets. Let T_ = (X, {G}, {C}) and T_* = (X, {C}, 
{G}) be two rntnus spaces over X where (G} denotes the family of all closed 
sets G and (C} denotes the family of all compact sets C in T_, while (C} are 
the closed sets of T* and (G} are the compact sets of  T*. So the identity map 
of X onto itself maps the closed (compact) sets of T_ onto the compact 
(closed) sets of T*. Such a pair, T_, T_*, is called an ann'pair and they are 
called the antispaces of each other. A space T_ is called an antispace if there 
exists a T* as indicated above. 

For more detailed properties and results about minus spaces and antispaces, 
see De Groot (1967). 

We shall now prove the following: 

3. The Main Theorem 

Theorem 1. The group of homeomorphisms of a topological space T is the 
same as that of its antispace T*. 

Proof. Let X be any nonemtpy set and T = (X, (G}, {C}), T* = (X, (C}, 
{G}) be two antispaces of each other over X where (G} denotes the family of 
all closed sets G and (C} denotes the family of all compact sets C of T while 
{C} are the closed sets and (G} are the compact sets of T*. Let f belong to 
the homeomorphism group of T and C be any closed set of T*, then C is com- 
pact in T Since the continuous image of  a compact set is compact, f(C) is 
compact in T Consequently, f(C) belongs to {C} in T*. Thus, f maps any 
closed set in T* to a closed set in T*. Similarly, we can prove that f - 1  maps 
any closed set in T* to a closed set in T*. Moreover, f as a map over the set X 
is one to one and onto and therefore is a homeomorphism of T*. Conversely, 
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it can easily be proved that if f is a homeomorphism of T*, then it is also a 
homeomorphism of T. This completes the proof of the theorem. 

4. Examples 

It has been shown by De Groot (1967) that if a topological space T is first 
countable and Hausdorff but not compact, then its antispace T* is compact 
but non-Hausdorff. We shall now show examples of some topological spaces 
which are first countable and Hausdorff and find out the topologies for their 
antispaces. 

Let M denote Minkowski space of Special Relativity, i.e. a four-dimensional 
real vector space with the characteristic quadratic form Q: 

M= (x: x = (Xo, X>X>Xa),Xo, Xl,X2,X3 are reals} 

Q ( x )  - - - 

Let G be the smallest group of one-one mappings of M onto itself contain- 
ing (i) the Lorentz group, i.e. all linear maps which keep the quadratic form Q 
invariant, (ii) translations of M (which also keep Q invariant) and (iii) dilatations 
of M (i.e. multiplication by scalars). 

Let us have the following cones at x: 

Light cone at x: CO(x) = {y: Q(y  - x) = O} 

Time cone at x: CT(x) = {y: Q(y - x) > O} o {x} 

Space cone at x: CS(x) = {y: Q(y  - x) < O} to {x} 

A time-like line through x is defined as a line in the usual sense lying 
entirely in Cr(x). Similarly, a light-like line through x is a line in the usual 
sense lying entirely in CL(x), and a space-like hyperplane through x is a hyper- 
plane in the usual sense lying entirely in CS(x). 

With these definitions, the t-topology and s-topology for M are defined as 
follows: 

Let Nte(x) = A~(x) N Cr(x),  where NEe(x) denotes an Euclidean neighbour- 
hood of x, i.e. N~. (x) = {y: d(x, y)  < e}, where d(x, y)  = {2~=0 (xi - yi)Z} v2. 
The t-topology on M is defined by specifying a countable local base.A/'(x) of 
neighbourhoods at each point x of M as follows: 

X ( x )  = {Nt(x): e > O, e rational}. Let (M, t) denote the space M equippped 
with the t-topology. Similarly, let NSe(x) = N~(x) 0 CS(x). The s-topology on 
M is defined by specifying a countable local base dff'(x) of neighbourhoods at 
each point x of M as follows: 

A"'(x) = {AreS(x): e > O, e rational}. Let Mequipped with the s-topology be 
denoted by (M, s). 

For more detailed information about Minkowski space and its topologies and 
their homeomorphism groups, see Zeeman (1967) and Nanda (1971, 1972). 

It is very easy to check that the t-topology and the s-topology are both 
finer than the Euclidean topology E on M and hence Hausdorff. Both of them 
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are, by definition, first countable. The former induces the one-dimensional 
Euclidean topology on every time-like line and the discrete topology on every 
light-like line and space-like hyperplane. The latter induces the three- 
dimensional Euclidean topology on every space-like hyperplane, and the 
discrete topology on every time-like and light-like lines. Moreover, the compact 
sets in the t-topology are essentially of the form of closed and bounded subsets 
of time-like lines and the compact sets in s-topology are essentially three- 
dimensional closed balls contained in space-like hyperplanes. When we con- 
sider their antispaces (M, t*) and (M, s*), those two types of compact sets 
become closed sets in (M, t*) and (M, s*) respectively. Thus an open set about 
a point x in (M, t*) is the complement of  a closed and bounded interval on a 
time-like line not containing x and is therefore unbounded. Similarly, an open 
set about x in (M, s*) is the complement of a closed three-dimensional ball on a 
space-like hyperplane not containing x and is therefore unbounded. Therefore, 
the open sets of such antispaces (M, t*), (M, s*) of (iV/, t) and (M, s) are of 
infinite diameter. 

Most of the topologies on M given by Zeeman (1967) and Nanda (1971, 
1972) have G as their homeomorphism group and are, moreover, first count- 
able and Hansdorff. The antispaces of  such topological spaces are, therefore, 
compact but non.Hausdorff and have the same homeomorphism group G 
according to Theorem 1. Moreover, the open sets of such antispaces are of 
infinite diameter. Thus, these antispaces provide us with a rich variety of  com- 
pact topologies on M having G as their homeomorphism group. In fact, it can 
also be established that for any arbitrary non-Hausdorff topology on Minkowski 
space having G as the homeomorphism group, the open sets are necessarily 
unbounded. 

Theorem 2. Let T be any arbitrary non-Hausdorff topology on Minkowski 
space having G as its homeomorphism group, then the open sets in (M, T) are 
of infinite diameter. 

Proof. To show that any arbitrary open set about a point x of Mis  of 
infinite diameter, we need only to show that any arbitrary open set about the 
origin is of infinite diameter, because the translation maps are homeomorphisms. 

Suppose to the contrary that there exists an open set O about the origin 
which is of  finite diameter k. Since T is non-Hausdorff, there exists at least one 
pair of distinct pointsx, y of M such that i fA and B are any two open sets 
about x and y respectively, then A N B 4 = 0. Let the distance between x and y 
be 3r, i.e. d(x, y)  = 3r, where d denotes the Euclidean distance function. Let 
0 t = (r/k)O. Since the dilatation map is a homeomorphism, O r is again an open 
set about the origin and the diameter of  O' = diameter (r/k. O) = r /k .  diameter 

n = O' +y, i.e. Otx and O~ are translates of O' of O = 1". Let O~ = O r + x and Oy 
and are therefore open sets about x and y respectively. Moreover, each of them 
is of diameter r. By our assumption, O~ Q O~ ~ 0. Let z E O~ Q O~. Since x 
and z are in Ox if follows that d(x, z) ~ r and similarly d(y,  z) ~ r. Therefore, 
by triangle inequality, 3 r = d (x, y )  <~ d(x, z) + d(z, y )  ~ 2r, thus giving a 
contradition. The theorem is therefore proved. 
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